Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gang Xie, ${ }^{\text {a }}$ Ming-Hua Zeng, ${ }^{\text {b }}$
San-Ping Chen ${ }^{\text {a }}$ and Sheng-Li Gao ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Guangxi Normal University, Guilin 541000, Guangxi, People's Republic of China

Correspondence e-mail: gaoshli@nwu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in solvent or counterion
R factor $=0.038$
$w R$ factor $=0.112$
Data-to-parameter ratio $=12.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[[[aqua(2,2'-bipyridine)cobalt(II)]-μ-5-nitrobenzene-1,3-dicarboxylato- $\left.\kappa^{3} O: O^{\prime}, O^{\prime \prime}\right]$ 0.25-hydrate]

In the title compound, $\left\{\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{NO}_{6}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\right.$]$\left.0.25 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the coordination polyhedron of the $\mathrm{Co}^{\mathrm{II}}$ ion is an octahedron. Each pair of adjacent $\mathrm{Co}^{\mathrm{II}}$ ions is bridged by a dianion of 5-nitro-1,3-benzenedicarboxylic acid ($\mathrm{H}_{2} \mathrm{nmbdc}$) to form a chain running along the a axis. These chains are linked by $\pi-\pi$ stacking interactions and $\mathrm{O}($ water $)-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a supramolecular structure.

Comment

The dianion of 5-nitro-1,3-benzenedicarboxylic acid $\left(\mathrm{H}_{2} \mathrm{nmbdc}\right)$ can act as a bridging ligand in a bis-monodentate coordination mode (Xiao et al., 2005) or a bis-bridging coordination mode (He et al., 2004). In this paper, two carboxylate groups of the nmbdc ligand coordinate in a different mode than previously reported (Xie et al., 2005).

In the title compound, (I), there are two $\mathrm{Co}^{\mathrm{II}}$ atoms, two 2,2'-bipyridine molecules, two nmbdc ligands, two coordinated water molecules and a solvent water half-molecule in the asymmetric unit (Fig. 1). Each pair of adjacent $\mathrm{Co}^{\mathrm{II}}$ atoms is bridged by an nmbdc ligand to form a chain running along the a axis. The mode of coordination of the two carboxylate groups on each nmbc ligand differs: one coordinates in a bidentate fashion and the other coordinates in a monodentate fashion. Each pair of adjacent chains is linked by $\pi-\pi$ stacking interactions between the benzene rings and also O (water) $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into double chains (Fig. 2 and Tables 2 and 3). The solvent water molecules are linked to the chains by O (water) $-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. In the crystal structure, there are many $\pi-\pi$ stacking interactions involving the $2,2^{\prime}$ bipyridine ligands (Fig. 3). Geometric parameters for the $\pi-\pi$ stacking interactions are listed in Table 3. The double chains are linked by these $\pi-\pi$ stacking interactions into a supramolecular structure (Fig. 4).

Received 15 November 2005
Accepted 23 January 2006

Figure 1
The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii.

Figure 2
The double chains linked by $\pi-\pi$ stacking interactions and hydrogen bonds along the c axis. For the sake of clarity, H atoms not involved in hydrogen bonding and solvent water molecules have been omitted [symmetry code: (v) $1+x, y, z]$.

Experimental

A mixture of cobalt nitrate hexahydrate $(0.073 \mathrm{~g}, 0.25 \mathrm{mmol}), 5-$ nitroisophthalic acid $(0.053 \mathrm{~g}, 0.25 \mathrm{mmol}), 2,2^{\prime}$-bipyridine $(0.039 \mathrm{~g}$, $0.25 \mathrm{mmol})$, sodium hydroxide ($0.02 \mathrm{~g}, 0.5 \mathrm{mmol}$) and water (10 ml) was stirred in air for 5 min , then transferred to and sealed in a 23 ml Teflon-lined stainless steel Parr bomb, which was heated at 433 K for 120 h and then cooled to room temperature. Red block-shaped crystals were obtained after washing with deionized water (yield 31%, based on Co).

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{NO}_{6}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)-\right.$	$D_{x}=1.650 \mathrm{Mg} \mathrm{m}^{-3}$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$	Mo K α radiation
$M_{r}=446.75$	Cell parameters from 3310
Monoclinic, $P 2_{1} / n$	reflections
$a=10.0561(2) \AA$	$\theta=2.5-23.3^{\circ}$
$b=23.3986(5) \AA$	$\mu=1.00 \mathrm{~mm}^{\circ}$
$c=15.3811(3) \AA$	$T=293(2) \mathrm{K}$
$\beta=96.317(1))^{\circ}$	Block, red
$V==8597.18(13) \AA^{3}$	$0.26 \times 0.14 \times 0.12 \mathrm{~mm}$
$Z=8$	

Figure 3
Part of the crystal structure of (I), showing $\pi-\pi$ stacking interactions. For the sake of clarity, nmbdc ligands, water molecules and H atoms have been omitted [symmetry code: (i) $1-x,-y, 1-z$; (ii) $-\frac{1}{2}+x, \frac{1}{2}-y$, $-\frac{1}{2}+z$; (iii) $\frac{3}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (iv) $\left.\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z\right]$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.780, T_{\text {max }}=0.889$
28059 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.112$
$S=0.95$
7054 reflections
548 parameters

7054 independent reflections
4747 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-12 \rightarrow 12$
$k=-25 \rightarrow 28$
$l=-18 \rightarrow 18$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0675 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.66 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.61 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{N} 1$	$2.069(2)$	$\mathrm{Co} 2-\mathrm{N} 4$	$2.077(2)$
$\mathrm{Co} 1-\mathrm{N} 2$	$2.108(2)$	$\mathrm{Co} 2-\mathrm{N} 5$	$2.114(2)$
$\mathrm{Co} 1-\mathrm{O} 1$	$2.276(2)$	$\mathrm{Co} 2-\mathrm{O} 7$	$2.307(2)$
$\mathrm{Co} 1-\mathrm{O} 2$	$2.199(2)$	$\mathrm{Co} 2-\mathrm{O} 8$	$2.176(2)$
$\mathrm{Co} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.048(2)$	$\mathrm{Co} 2-\mathrm{O} 10^{\mathrm{ii}}$	$2.040(2)$
$\mathrm{Co} 1-\mathrm{O} 13 W$	$2.135(2)$	$\mathrm{Co} 2-\mathrm{O} 14 W$	$2.115(2)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$	$77.82(9)$	$\mathrm{N} 4-\mathrm{Co} 2-\mathrm{N} 5$	$77.77(9)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 1$	$146.07(9)$	$\mathrm{N} 4-\mathrm{Co} 2-\mathrm{O} 8$	$88.41(9)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 2$	$88.38(9)$	$\mathrm{N} 4-\mathrm{Co} 2-\mathrm{O} 14 W$	$95.01(9)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 13 W$	$93.44(8)$	$\mathrm{N} 4-\mathrm{Co} 2-\mathrm{O} 7$	$145.72(9)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{O} 1$	$99.16(9)$	$\mathrm{N} 5-\mathrm{Co} 2-\mathrm{O} 7$	$97.17(9)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{O} 2$	$95.02(9)$	$\mathrm{N} 5-\mathrm{Co} 2-\mathrm{O} 8$	$94.80(9)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{O} 13 W$	$169.57(9)$	$\mathrm{N} 5-\mathrm{Co} 2-\mathrm{O} 14 W$	$170.88(9)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 1$	$57.98(8)$	$\mathrm{O} 8-\mathrm{Co} 2-\mathrm{O} 7$	$57.94(8)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	$126.38(9)$	$\mathrm{O} 10^{\mathrm{ii}}-\mathrm{Co} 2-\mathrm{N} 4$	$125.63(9)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 2$	$91.83(8)$	$\mathrm{O} 10^{\mathrm{ii}}-\mathrm{Co} 2-\mathrm{N} 5$	$91.14(9)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1$	$87.27(8)$	$\mathrm{O} 10^{\mathrm{ii}}-\mathrm{Co} 2-\mathrm{O} 7$	$88.01(8)$
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 2$	$145.22(9)$	$\mathrm{O} 10^{\mathrm{ii}}-\mathrm{Co} 2-\mathrm{O} 8$	$145.90(8)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 13 W$	$88.80(8)$	$\mathrm{O} 10^{\mathrm{ii}}-\mathrm{Co} 2-\mathrm{O} 14 W$	$88.58(8)$
$\mathrm{O}^{2} 3 W-\mathrm{Co} 1-\mathrm{O} 1$	$91.28(9)$	$\mathrm{O} 14 W-\mathrm{Co} 2-\mathrm{O} 7$	$91.93(8)$
$\mathrm{O} 13 W-\mathrm{Co} 1-\mathrm{O} 2$	$90.36(9)$	$\mathrm{O} 14 W-\mathrm{Co} 2-\mathrm{O} 8$	$90.52(9)$

Symmetry codes: (i) $x-1, y, z$; (ii) $x+1, y, z$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O13W-H13A \cdots O7	$0.853(10)$	$1.99(2)$	$2.741(3)$	$147(3)$
O13W-H13B \cdots O10	$0.850(10)$	$1.98(2)$	$2.753(3)$	$151(3)$
O14W-H14B \cdots O1	$0.842(10)$	$2.06(2)$	$2.769(3)$	$142(3)$
${\text { O14W-H14C } \cdots 4^{\text {i }}}^{\text {in }}$	$0.849(10)$	$1.923(18)$	$2.715(3)$	$155(3)$
${\text { O15W-H15A } \cdots \text { O2 }^{\text {iii }}}$	0.86	2.28	$2.833(12)$	123

Symmetry codes: (i) $x-1, y, z$; (ii) $x+1, y, z$; (iii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.

Table 3
Geometric parameters of the $\pi-\pi$ stacking interactions ($\AA,{ }^{\circ}$).
$C g 1$ is the centroid of the ring containing $\mathrm{N} 1, C g 1^{1}$ is the centroid of the ring containing $\mathrm{N}^{1}, C g 2$ is the centroid of the ring containing $\mathrm{N} 2, C g 3$ is the centroid of the ring containing $\mathrm{C} 11, \mathrm{Cg} 4$ is the centroid of the ring containing $\mathrm{N} 4{ }^{\mathrm{ii}}, \mathrm{Cg} 4^{\mathrm{iv}}$ is the centroid of the ring containing $\mathrm{N} 4^{\mathrm{iv}}, C g 5$ is the centroid of the ring containing $\mathrm{N} 5^{\mathrm{iii}}$ and Cg 6 is the centroid of the ring containing $\mathrm{C} 29^{v}$.

Rings	Distance	Dihedral angle
$C g 1 \cdots C g 1^{\text {i }}$	$3.977(2)$	0
$C g 2 \cdots C g 4$	$3.583(2)$	$3.57(5)$
$C g 2 \cdots C g 5$	$3.889(2)$	$6.65(5)$
$C g 3 \cdots C g 6$	$3.662(2)$	$4.9(1)$
$C g 5 \cdots C g 4^{\text {iv }}$	$3.609(2)$	$3.08(5)$

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $-\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z$; (iii) $\frac{3}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z ;$ (iv) $\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z ;$ (v) $1+x, y, z$.

H atoms on C atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The coordinated water H atoms were located in difference Fourier maps, and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85$ (2) \AA and $\mathrm{H} \cdots \mathrm{H}=1.39$ (2) \AA. The uncoordinated water H atoms were located in difference Fourier maps and constrained to $\mathrm{O}-\mathrm{H}=$ $0.86 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. The 0.5 occupancy factor results from satisfactory elemental analyses.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL.

Figure 4
A packing diagram of (I). H atoms and solvent water molecules have been omitted.

This work was supported by the Natural Science Foundation of China (grant No. 20471047), the Natural Science Foundation of Shaanxi Province (grant No. 2004B07) and the Education Department of Shaanxi Province (grant No. 05JK302). The authors thank the Instrumental Analysis Centre of Northwest University for data collection at the CCD facility.

References

Bruker (2002). SADABS, SAINT, SMART, and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
He, H.-Y., Zhou, Y.-L. \& Zhu, L.-G. (2004). Acta Cryst. C60, m569-m571.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Xiao, H.-P., Li, X.-H. \& Cheng, Y.-Q. (2005). Acta Cryst. E61, m158-m159.
Xie, G., Zeng, M.-H., Chen, S.-P. \& Gao, S.-L. (2005). Acta Cryst. E61, m2273m2275.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

